Articles

Why Data Science Teams Need Generalists, Not Specialists

In The Wealth of Nations, Adam Smith demonstrates how the division of labor is the chief source of productivity gains using the vivid example of a pin factory assembly line: “One [person] draws out the wire, another straights it, a third cuts it, a fourth points it, a fifth grinds it.”

This division of labor by function is so ingrained in us even today that we are quick to organize our teams accordingly. Data science is no exception. An end-to-end algorithmic business capability requires many functions, and so companies usually create teams of specialists: research scientist, data engineers, machine learning engineers, causal inference scientists, and so on. Specialists’ work is coordinated by a product manager, with hand-offs between the functions in a manner resembling the pin factory: “one person sources the data, another models it, a third implements it, a fourth measures it” and on and on.

Source: hbr.org
Author: Eric Colson

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s